Ambrosetti–Prodi type multiplicity result for a wave equation with sublinear nonlinearity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiplicity result for a semilinear Maxwell type equation

In this paper we look for solutions of the equation δdA = f (〈A,A〉)A in R, where A is a 1-differential form and k ≥ 2. These solutions are critical points of a functional which is strongly degenerate because of the presence of the differential operator δd. We prove that, assuming a suitable convexity condition on the nonlinearity, the equation possesses infinitely many finite energy solutions.

متن کامل

Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions

In this paper‎, ‎we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity‎. ‎Using some variational arguments and exploiting the symmetries of the problem‎, ‎we establish a multiplicity result giving two nontrivial solutions‎.

متن کامل

Damped Wave Equation with a Critical Nonlinearity

We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { ∂2 t u+ ∂tu−∆u+ λu 2 n = 0, x ∈ Rn, t > 0, u(0, x) = εu0 (x) , ∂tu(0, x) = εu1 (x) , x ∈ Rn, where ε > 0, and space dimensions n = 1, 2, 3. Assume that the initial data u0 ∈ H ∩H, u1 ∈ Hδ−1,0 ∩H−1,δ, where δ > n 2 , weighted Sobolev spaces are H = { φ ∈ L; ...

متن کامل

A Multiplicity Result for the Scalar Field Equation

Abstract We obtain N − 1 pairs of nontrivial solutions of the scalar field equation in R under a slow decay condition on the potential, without any symmetry assumptions. To overcome the difficulties arising from the lack of compactness, we use the concentration compactness principle of Lions expressed as a suitable profile decomposition for critical sequences. This is a joint work with Cyril Ti...

متن کامل

A dimension-depending multiplicity result for the Schrödinger equation

We consider the Schrödinger equation { −∆u+ V (x)u = λK(x)f(u) in R ; u ∈ H(R ), (Pλ) where N ≥ 2, λ ≥ 0 is a parameter, V,K : R → R are radially symmetric functions, and f : R → R is a continuous function with sublinear growth at infinity. We first prove that for λ small enough no non-zero solution exists for (Pλ), while for λ large enough at least two distinct non-zero radially symmetric solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2006.10.020